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I. INTRODUCTION

A preliminary system design for optical pattern recognition
of d istant targets was presented in a previous report. The design was
for a field-scale system , and was based on cer tain conc epts of target
signatures and recognition criteria that are associated with field—scale
properties. These signatures and recognition criteria are believed to
be real is tic and reasonable , but they have not been tes ted direc tly
through actual observations and measurements .

Direct testing would require either field tests using an actual
system based on the design that has been presented , or laboratory tests
using a model system that is appropriately scaled in its optical per-
formance. The construction of a full-scale system and the carrying out
of field measurements would be expensive. It is the author ’s op inion
that the present Status of and need for optical pattern recognition
techniques in tactical applications would not justify the expense.

Laboratory tests using a model system would be less expensive , and
the cost could probably he justified at this stage of tactical app lica-
tion of optical pattern recognition. Also , a model system can be modi-
fied with relative ease to sharpen recognition criteria and lead to
improved design concepts for field-scale systems. Thus , a laboratory
experiment wi th an appropriate model system is the logical step follow-
ing the design exercise for the field-scale system.

For optical diffraction , there is a simple and well-known scaling
law that depends only upon the ratio of the two different wavelengths
used in the two different diffraction experiments. This law is appli-
cable to any optical pattern recognition system. Unfortunately, it is
of rio practical value for the present case because realistic wavelength
ratios are only approximately 0.1; and a 0.1 scale having a 10-km range
would be 1 km, which would still require a field system and field tests .

The development of a laboratory system that correctly models the
optical performance of the field-scale system therefore requires a more
general optical scaling law. Such a law has not previously been
developed . Consequently, he author has developed a law. This report
presents , in detail , the derivation of the new scaling law and the scal-
ing or modeling equations that are suitable for the preliminary tactical
system design.

II. BACKGROUND

Two diffraction experiments using the wavelengths X and

are considered where one experiment is required to be a “scale model”
of the other. For simplicity, the objects are assumed to be trans-
parencies illuminated by plane waves , and only diffraction by free

3
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space are considered . The experiments are analyzed using the Fresne l-
Kirchhoff in tegra l.  These systems are i l l u s t r a t ed  in F igure  1.

(a) ORIGINAL EXPERIMENT

I
TO

(b) SCAL E MODEL EXPERIMENT

Figure 1. Diffraction experiments.

In the original experiment , the amplitude in the receiv’irig p lane
is given by

= - .
~

.
~ffT xo y0

)

2 2 2 h/ ’2

~~~~~~~~~ 
+(y0-i1) 

~ 
2 1/2

L~o ~
) + (y 0 - ~) + r
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where

2n
k

For purposes of scal ing, one follows the convenient and usual practice
of in t roducing  dimensionless variables :

u0 kx
0 , v

0
= k y0 ,~~~~~ kr

Then,

U(
~~l

) = , = +fJT(~~ ,
~~~~

)

r 2 2 2,1/2
i [(u0

_ c) +(v
0
-’r) +r Je 

7 ~~~~ 
du
0

dv
0

L(uo - .- )  + (v~ - r )  + r J
If one also writes

V(’ , t )  = u(.~ , .

and

v
0) 

= T(_j~ ,

the completely nond imensionalized equation for the amplitude in the
receiving plane is

V(~ , T )  = _
~~~~fJ3~(u0 , v0)

2 2 2 1/2

e1~~O
_ 0 )  +(v 0-t) 

~~ 
]

du dv

[(u 0 
- o) + (v 0 - ) 2 + ~ 2]

1 2 0 0
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For the model system , the amp litude in the receiving plane is

- ..J._.ffT (X , Y0)

2 2 2 1/2
ik j [(X 0

_
~~1) +(Y 0-~11) +1~ ]

~ - + (Y
0 

= ~l)
2 + R2]

Introducing the nondimens ionalizing subst i tu t ions

= k~X0 , V0 = k1Y 0 , 
= k~ R

= k~~1 ~ 
= k

1~1

V
1
(o
1 ‘ 

= u
l(k ‘

and

V~) T
1(j~

2 
‘ k1)

one finds that

- 2i
~JJ ~l~~O , v0)

2 2 2 1/2
i [cu0-o 1) + (V0-t 1)

x e d~tid~V

[ - 0 1
) 2 

+ ( - ) 2 + ~ 2]
1 2 0 0

it is seen that the two nondimensionalized amplitudes of the

diffraction patterns are equal ,

V
1
(o , V( o , ‘r)
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provided that

v
0
) = ~.T(u0 , v

0)

because the integrands are identical . The f i r s t  relat ion means that the
amplitudes of the two incident waves must be equal. The second relation
may be wr itten as

k 1R = k r

or

R = T r

so that the distance scales as the wavelength ratio. The last relation
can be written as

fkx 0 
ky
0
’
\

T l(
\
-~-— . -~—) T(x O~~~Y O)

This impl ies the spa tial correspondence

f~ o ky
0~ f~ l ~l \

(X
1 

‘
~~~~~ ~

-j
~ ~i_) \~~~

xo , T y o)

so that the pattern T
1 
is similar to that ~f T but scaled by the ratio

Finally, the equality of the nonditnensionalized diffraction ampli-
tudes implies that

u 1(~~ .~~ 1) = u ( ~ ,~~i)

so that the model d i ff r a c t i o n  pat tern is scaled from the original  by

Another way to view this scaling is that all dimensions in the
model system are the same number of wavelengths 

~~ 
as the corresponding

dimensions in the original system in terms of X1
. It is intuitively
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satisfying that optical systems should satisfy such a scaling law , but ,
as indicated ear lier , this  is riot helpful in . arriving at a scale model
for the f ield-scale optical pat tern  recogn i t ion  system; another s c a l i n g
law is needed, in particular , it might be helpful if the scaling ldw
allowed one to choose the ratio of the sizes of the real d i f f r a c t i o n
pa t te rns .  That case will be examined next.

I I I . GENER AL SCALING EXAM PLE

For this example , let a be the scaling factor between the real
diffraction patterns of the two systems illustrated in Figure 1; i.e.,
the pattern amplitudes are related by

U 1(a~1a~) = u (~1~)
and the spatial correspondence is

= (a~ , a~)
If a > 1, the pattern in the model system is larger than that  in the
original system; and if a < 1, the pattern in the model system is smaller
than that in the original system.

In terms of the dimensionless variables used in the preced ing
section , the specified scaling equation can be written as

= , = V( a ,

But ,

U (~~ ~
L\
~~~~ 
(~~l~~
) (ak~~~) (o~

l\k ‘ k/ 1 k1 
‘ l\ k ‘ k

Introducing

onecan write the scaling equation as

~3r) = V (~ ,
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From the preceding section it can be seen that

~r )  = _ —
~~ff ~1~ ”O ‘ 

V~)

2 2 21~
’2

e~ 

[(ti0-~ .) +(V0-~~) +~ J 
—du dV

2 ’ 2
1/2 0 0

[~0 -~ . - r + ( v 0 -~ r)  +
~~

]
Making the obvious substitution

= —
~ v =

allows o-le to write

V
1
(H = - 7

1(~
u
0 , ~v~)

2 2 1/2

e
0~~~~~~~~~~~

T) +R ]
du dv1 ~‘ 2 2 211/2 0 0

L~~(uo - ~Y + ~~ (v~ — ~r )  + 
~ J

which is tO be compared with the expression for V(o , -t ) .  From this
comparison it must be concluded that for arbitrary ~ and for arbitrary
but physically reasonable functions 7 and

V
1
(;~ - , ~ ,

i.e., the des ired scaling equation is not satisfied .

However , it should be noted that the expressions for V
1 and V are

based on the general form of the Fresnel-Kirchhoff integral which applies
to a broader class of Situations than are normally encountered in optical
systems . Therefore , it is reasonable to consider the question of whether
the proposed scal ing equation can be satisf ied for a cer tain class of
opt ical systems . This question is approached by mak ing cer tain standard
approx imations in the Fresnel-Kirchhoff integral.

First , it is observed that in most optical systems the exponential
turn in the integrand , for examp le ,

2 2 2 1/2

e~~~~~ 0
_0 +(y

0
-~ ) +r]
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oscillates over a complete cycle for a one-wavelength change in the
distance ,

2 2 2 1/2
s = [(x0 

- 
~ 

+ (y
0 

- + r ]
Thus , for even a relative ly large change in S, the effect of S in the
denominator is practically constant so that it can be rep laced by its
approx imate value r and removed from the integral.

Second , the finite aperture of any real optical system will limit
the range of variation of S. This means that S can be replaced in the
exponent by an approximation that takes into account the aperture size.
Expand ing the square root ,

s = 

rl 
i + 

(x
0 

2 

- 

:

)
2 

- 

[~0 - )
2
:( - )2] 

+ •

~~~~

• 

}

(x0 - 
~~
) + (y

0
- 

~ )

2r

provided that

k [(x0 - 
~) 2 + (y

0 - 
)
2]

38r

over the range of variation of the variables. The largest angle that a
light ray can make with the optical axis is given by

(x0 - )~~ max
tan 6 =

x r

or

(y
0 - 

r)~ max
ta n 9  =y r

If one takes tan 6 = tan 0 , the preceding inequality become s

4 2~.tan e <<—
r

or

t a n 6 < < (~~~)
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For ?~. = 10.6 ~m arid r = 10 kin , the righthand side is 6.8 ~
‘ l0~~ , so that

<< 23.78 minutes. For ~. = 0 . 6 3 2 8  ~m and r = 1 m,the righthand side is

3.4 io 2 , so that 6 << 1.92 degrees.

It has been found from experience that the preceding inequality is
more stringent than necessary for most practical calculations . The
point is that the target size and aperture size must be small enough,
relative to the range , so that all light rays make small angles with the
optical axis. Because of this condition , this approximation for S, in
which nothing beyond the quadratic terms in the variables is retained ,
is called the “paraxial approximation.”

Upon apply ing these two approximations , it is found that

A
0
i 

iT i/2T(o 2+r
2 )

V(. , t ) - ~~z e e

If i/Zi(u~+v~
’
) i/?(u0

a+v
0~

r )

<JJ 7(u0 , v
0

) e ‘e du
0

dv
0

and that

2 2
- . . -  — _ 1’ i~~ i~~ /2~ (o 4-1 )

1’~ 
/ — 2it~ 

e e

ff i~
2/2~ (u~+v~

) 
-i~

2I~~(u 0o+v0T)
‘~JJ71C~u

0 , ~:v0
) e C du

0
dv
0

It is now apparent that the scaling equation is satisfied for a broad
class ot functions T ( u 0, v0) and for ~ a rb i t rary  provided that

A~~~
2 

e~~ = ~~~

-
~~ 1

~ r 

— .T
1

( u
0 , ~v0

) J’(u0 , 
v
0)

It is seen that for ~ = 1, the previous wavelength scaling law is
obtained .

For arbitrary S , the second of the preceding equations is equivalent

11
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The last relation can be written as

T
i(f

3~~~xø , ~~~~ y0) 
= T(x

0 
, y0)

or

ay
0

) = T(x
0 , y

0)

and the first relation may be written as

A — A i(l—~
2)kr

~~~~~

Bec ause r , k, and ~ are fixed numbers , the exponential factor simply
represents a fixed-phase relation between the two incident beams . It
may be noted that this phase relation will not affect the intensity of
the model diffraction pattern.

This example shows that the new scaling relation ,

U
1
(a~ , a~ =

between a pair of optical systems involving free-space diffraction can
be val id as long as the systems sa tisf y the paraxial approximation.
The implication of this result is that by limiting consideration to
parax ia l systems , an en tirely new set of optical-scaling relations can
be found .

Before considering these new relations , it is useful to comment
further on the present example. For cr = I (i.e., the two diffraction
patterns are the same size), one finds that the two objects must be
identical; and because ~ = 

~~~~~~ in this case , the distances are related
by

x
R~~~~~~r

‘
~~ 1

The distance is inversely proportional to the wavelength ; whereas , in
waveleng th scal ing, the distance is directly proportional to the
wavelength.

The present example also allows scaling of systems with no wave-
length change. Taking 

~~~ 
= ?. , it is seen that I~ 

= a and that

R = a
2
r

12 
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For examp le , f or a = 2 , the pa tter n in the model sys tem will be twice
the size of the origina l pa t t e rn  and the transmission function in the
model system will be twice the size of the original function; however ,
the distance in the mode l system must be four times the distance in the
original system.

The scaling relations that have been derived in this example are
valid for a broad class of transmission functions T(u0, v0). in fact ,

no r e s t r i c t i o n s  outside the par axial approx imation have been p laced on
7. Because of this gene ra l i t y , this kind of scaling will be defined as
“ordinary scal ing .”

It is important to note , however , that ordinary scaling does not
include all possible cases of optical modeling. There can be special
transmission functions or special optical systems for which other
scal ing re la t ions  ex is t .  As an examp le , suppose that

• T(x 0 , y0) 
= ~ (x

0
)b(y

0)

and that

T
1

(X
0 , Y

0
) = 5(X

0
)~~~(Y

0
)

Then,

v0
) = k~~~

2 E ( u 0
)5(v

0
)

and

~v0
) = 

(

~~~)_ 2  
~ (u 0)b ( v 0)

so that

~v0
) ~ 7(u0 , v

0)

Never theless , d irec t eval ua ti on of the two integrals shows tha t

V
1

(~~ , ~‘-r )  = V(o ,

provided that

A k 2 
. — A k

2

1 1 iR 0 tr-~~~~ e — — e

and
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This kind of modeling (i.e., dependent upon special properties of the
objects or of the optical systems) will be called “exceptional scaling”
or “singular scaling .” Although singular scaling may be of practical
importance in certain instances , it is not sufficientl y general for the
purposes of the optical pattern recognition work. This report , therefore ,

• is concerned primarily with ord inary scaling.

I V. DEFINITIONS AND RULES OF ORDI NARY SCALING

Ordinary scaling applies to optical systems for which the
paraxial approximation is valid and in which the light is totally

• coherent.  Ordinary scal ing is independent of special structural proper-
ties of the object and of special characteristics of the optical system ,
such as the formation of an image or a Fraunhofer diffraction pattern in
the output plane . Ordinary scaling requires a geometrical similarity ,
at the output planes , batween the total diffraction effects of the two
optical sys tems , the original system , and the model system.

Because ordinary scaling is based on diffraction phenomena , it is
applicable to any optical pattern recognition system , optical data pro-
cessing system , or imag ing system using coherent light. It should also
be applicable to holography, although no attempt has been made to
examine this question.

The principles of ordinary optical scaling are sufficiently general
that they can be applied to systems containing any kind of optical ole-
merit including electrooptic or acoustooptic devices and nonlinear ele-
men ts , as well as ordinary passive elements. These principles are also
expected to be applicable to propagation through turbulent media and
through scattering media . However, general investigations have not he~ n
undertaken. It is sufficient for present purposes to consider optical
systems cons i s t ing  onl y of spherical lenses and apertures.

The primary scaling relation is the geometrical similarity be tween
diffraction patterns . Denoting the model system b’~ a subscript , on the
func tions as before , this similarity can be expressed as

~ ~ /~-‘~ .
~~~~ \= u ~ ~1t~k 1~~~~~~~ k

1
h1) .

The funct ions  U , U 1 are comp lex amp l i tudes , and th i s  r e l a t i o n  says that

the amplitudes are geometr ical ly s imi la r  in a l l  respects, inc l uding the
phase. The phase can be important in some applications , holography
being an examp le , but in the final output plane of most systems the
phase is unimportant because the intensity, or absolute square of the
amplitude , is measured. For these systems,condition I can be replaced bv

ii. , p = K U (~ ‘i)
1 1 
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where K is an arbitrary phase function involving the output coordinates
(F , ‘~) as well as geometrical constants of the primary optical system.
Condition II is less res t r ic t ive  than condit ion I. Condi t ion II has the
particular virtue that it removes any requirement to control the phase
of the input light beam on the model system.* Because it is a pure
phase function , K satisfies the relation

Kj
2 

= 1

In terms of the nondimensionalized amplitudes , the two preced ing
conditions are

I ’ . V
1(~

c , ~-r) = V(c ,

and

II ’ . V
1

(~~o , ~‘r) = K V(o , -r)

In the remainder of this work , only conditions II and II’ will be used.

One more remark may be made regarding the basic scaling relations.
As written , the relations require that the two systems have the same
power. This requirement can be convenient for testing detectors on a
model , and it will be carr ied through the calculations. The equal power
requirement does riot affect the other parameters of the model, if power

is not a consideration , one can s imply let 1K 1 2 be any convenient
constant.

The equations for the ordinary scaling of one optical system from
another can be developed in a straightforward fashion by following the
type of procedure that was used with the example in the second section.
This procedure is formalized in the following seven rules:

Rule 1 — The total di ffrac tion effec t of each of the optical sys tems
is written as a multip le integral by successive application of the
Fresnel-Kirchhoff diffraction integral.

Rule 2 — The paraxial. approximation is applied.

*For systems in which the intensity is measured in the output plane ,
the sc aling relati on co uld be taken as

~~ 

),

2 
= l U ( ~ ~ ~ ) I

2
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Rule 3 — No special proper ties of the optical system or the object
are to be introduced into the integrals , arid no integrations are to be
carried out , no matter how simp le.

Rule 4 — The integrals are nondimensionalized.

Rule 5 — Scaling factors are introduced into the integral for the
model system. There will be one scaling factor for each internal plane
or independent coordinate , arid one scaling factor for the output plane.

Rule 6 — Factors independent of the variables of integration are
moved outside each multiple integra l and lumped together as a phase-
amplitude coefficient.

Rule 7 — The scaling condition II ’ is satisfied by requiring
equality of corresponding independent factors in the integrands for the
two systems.

Rule 3 helps to guarantee that no singular properties of the object
or a particular optical sys tem, e.g., one having an image plane in the
output p lane, are introduced into the scaling equations . The prohibition
against carrying out any integrations guarantees that the maximum number
of scaling factors remain in the scaling equations . The fact that a
particular kind of optical element (lens or prism , for example) is used
at a given location must be introduced into the multiple integral for
the diffraction effects ; however, numerical values and special geometri-
cal relationships should be excluded .

These rules generate scaling equations for classes of optical
systems ; i.e., a set of equations for one-lens systems , a set for two-
lens systems, etc. Numerical values and special relations for a partic-
ular system in a class can then be substituted into the appropriate
equations.

It is convenient for present purposes to treat the illuminating
light beam in a specialized way independent of Rule 3. This avoids some
complexities and specializes the results to systems similar to the sug-
gested design of the tactical optical pattern recognition system . A dis-
cussion of the illuminating beam will be presented in the next section .
Then , the preceding seven rules will be appl ied , in succession , to
systems with increasing numbers of elements. The discussion will end
with a set of equations that are appropriate for the tactical optical
pattern recognition system.

V. TARGET ILLUMINATION

The first two examples in this report were based on p lane-wave
illumination of the target. This was chosen to illustrate the two
scaling principles in the simplest manner . Any tactical optical pattern

16
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recognition system using a laser source must use a diverging spherical
wave to illuminate the target. The target illumination and diffraction
to the first optical surface is illustrated in Figure 2. For computa-
tional purposes , the targets are represented as transparencies with the
light sources beh~.nd them. Reflection and transmission are entirely
equivalent optically.

F

(a) ORIGINAL SYSTEM

XO X~

(b) MODEL SYSTEM

• Figure 2. Target illumination and diffraction
to first optical surface.

In the original system , the contribution from the spherical wave
illumination is

- 1/2

e [x~~~~~~~] 
— 

e
i
~~0 

~~~~~~~~~~~~~~
12  2 211~

’2
+ y 0 + roj
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where the paraxial approximation has been used . A similar expression is
true fo r  the model system. The propagation factor from the object to
the x1, y

1 
plane is

2 2 2 1/2
+r ] ikr 

e~ 
k/2r(x~+y~~) e

i 2 r
~~~~~~~~

1 2 2 21l~
/’2 r

- x0) + y
1 

- y0
) + r ]

- ik/r(x
0
x
1
+y0y1)

X e

where, aga in , the paraxial approximation has been used , From these
resul ts , it is seen that for a point source in the original system the
free—space diffraction to the first optical surface is given by

(1) ~~ 
ik(r

0
+r) ik/2r(x~+y~)U (x1 ,y

1
)= - ~~--—— e e

11 ik/2(l/r
0+l/r)(x~+y~)

XJJT(x0 , y0) e

-ik/r(x
0
x
1
+y0

y,)
X e  dx

0
dy0

Similarly, for the model sys tem

u~
1
~ (x y - 

A
1
i 

e
i k R

~~~~ ~~~~~~~~~~~~~~1 1’  1

11 ik 1/2 ( l/R 0+l/R)(X~ +Y~~)
XJJT1

(X
1 

‘i
~I~ 

e

-ik
1
/R(X

0
X
1
+Y0Y1)X e  dX

0
dY
0

These are the starting expressions for the subsequent development
of scaling equations.

VI. SCALING EQUATIONS FOR A ONE-LENS SYSTEM

The two systems are i l l u s t r a t ed  in F igure  3. The lenses are
designated by £ and C , respec tively, and have focal lengths f and F as

18
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(a) ORIGINAL SYSTEM

0 

R
~~~~~~~~~~~~~~~~~~~ R

1)

(U MODEL SYSTEM

Figure 3. One- lens system.

indicated . The lenses are thin spherical lenses with circular apertures.
The aper tures are represented by the transmiss ion functions

11 2 2\~
’2

— 
,~x 1 + y

1)D(x 1 , y
1 ; p) — rect~ 2~

and

I(x2 
+ ~2)~

1’2]

p) rec
t[ 

1 j
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where

1 for w
/wrect( — =

0 fur  w > p

The lens transm ission func tion, independent of the aperture , is a pure-
phase function that converts an incident plane wave into a converging
(for positive focal length) spherical wave , the spher ical rad ius be ing
the focal length of the lens . Because of the aper ture , the paraxial
approximation can be used ; therefore , the phase functions are

2 2 2 1/2 
2 2

-ik~x1
+y

1
+f ] 

~~~~~ 

_ ik/2f~x1
+y
1)

and

2 2 2 l.
~
’2 2 2

e

_
l[X~~~~~

F’ I e~~~~~

’ 
e

_

~~ l/2F(~~
f
~~)

The total transmission function of the lens , which is effective at  the
lens plane , is the product of the aperture function wi th the phase
function.

The diffrac ted wave that is incident on the lens plane is first
affected (multipl ied) by the apertured lens , then diffracted through
free space to the output plane. The propagation factor for this last
d i f f r a c t i o n  in the or ig ina l  system can be wr i t t en  in the paraxia l
approximation as

ik [(~_x
1) 2+(~~ y1) 2+r~

] e
ikr l 

e
l 2r

1~~
2
+T1

2
) 
e
i 2 r

l~~~~
Y
~~[ - x~) 2 + (,~ 

- y1)
2 
+ r~

]
~~

2 —

— i k / r 1(x 1~+y 1-1)
X e  ,

wi th a similar expression for the model system. Putting these results
together with the previous results  on target i l l u m i n a t i o n , it is found
that
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/ ~ \2 e~~~~~0
t
~~

_
~~ ik/2r

1
(~

2
+~1

2)
, r~) 

= (
~
-
~
;
~) 

A~ r0r 1r e

XJJJJT
(x o , y0) 

~~~~~~~~~~~~~~~~~~~~~~

ik/2(l/r+1/r
1— l/f)(x~+y~)>< D(x~ >‘~ ~~ e

-ik[x
1

(x
0/r+~ /r

1
)+y

1
(y
0
/r-h~/r 1)J‘

~ e dx
0
dy0

dx
1
dy

1

and

2 ik
1

(R
0

-f-R-I-R
1-F) ik /2R (~

2
+

2

U(~ ~~) =(- -
~~\ A  e 

e 1 1~~ l1 ~‘l 
‘ 1 

~, 
?~~ / 1 R

0
R
1
R

XJJJJT1
(X O , 

~~~ 
e~~

h /2
~~~~ 0~~~~~~~~~~~~)

1 1’ 1 , p 1
) e

- ik
1 

[X
1 

(X
0
/R-I-~1/R

1
)+Y

1
(Y
0
/R-h11/R

1)JX e  dX dY dX dy

To nondimensionalize the diffraction equation for the original
sys tem , the change of variables is introduced :

u
k 

= kx . , v . ky~

T. =k r ., f = k f  ,

and also the functions
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~~~~~~~~~~ ~~ iei.j..;sa ,.a.~~~ ~~~~~~~~~~~ — - ~~~- - - ,

V(o , ~~) 
= , = u(~ ,

v0) = T(~~ , = T(x 0 ,  y
0)

D(u 1 , v~ ; kp) = D(-j~ , -~~~ 
; = D(x~ , y1 ; p)

Then, one can wr ite

2 
i(~0

+~+71-1) i/2f ( 2+w 2
)

(- i) e IV(o ,~~~ 2a?~. 
A
0 ~ 

e

Xff
T(u o , v~ ) e 2(1fto~~~~~(~~~~~)

X t (u~ , v~~; a , i) du 0dv 0

where

I(u0 , v0 ; o , T)  ..JJD(u j , v1 ; 
kp)

x e
2(1 _ T ) (

~~~~
7
~~)

x e du1dv 1

It is convenient, for the app l icat ion of the last rule,to separate the
multiple integral in this fashion.

For the model system , the f i r st  change of var iables  is

= k1X 1 , V . = k
1
Y~

= k R . ,~~~~ = k F
1 11  1

o1
k
1~ 1, r 1

k
1i11
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This change is accompanied by the functional substitutions

V
1
(o1 , = 1) U1

(~ 1 , Ill)

= T
1(~~ 

, 

~)= T1(X 0 , Y
0)

D
1

(U
1 ,

V
1 

; k
1p1
) = D

1(~~ 
, ; D

1
(X 1 , Y1 ; p1)

so that one obtains

2 i(~0
-I-~-i~~1-P) i/2R (2÷~

2
(— i.) e 1\1 1V

1
(~~1 , T~~) 

~~~~ 
A
1 

e

If i/2(l/~0
+l/R) (~+v~)e

X ~ 1 ~~~~~ , V~ ; .: , T 
l~ 
d~ 0

dV
0

where

~~~~ ‘~~~~~ ~l 
~~~~~~~~~ =ff

D l~~~l ,
V
1 

; k
1
p)

x

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
X e  dU1dV1

At this stage , the scal ing factors are introduced through the change of
variables

= C~u0 , V0 = Ctv
0

ti•
l 

= •U l ,Vl 
= •~v l

~1 
= ;

~~~
, 1 1 

=

23 

- . .-



This gives

2 i(W
0
+~+R

1
-~~) ii~

2/2~ (
24.~2)

V “~ 
— 

(—ia y) e 1
, ~~‘‘ 

— 
I 

e

(f ia2/2(1/~0÷1/~)(u~÷v~
)

XJJ ~~ 
(au0 , Tv 0)

X 11(au0 , cxv0 ; ~a , err) du0dv0

and

11(au0 , av 0 ; ~a , ~~~~) =JJD1(7u 1 , yv 1 ; k1~ 1)

x e~~
2/2(1

~~~
1 ~~~~~ (u~+v~)

x ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
du

1
dv

1

Apply ing Rule 7, first set I~ I, then app ly the rule directly to

the two integrands. These first steps yield the following relations :

R1

a 1

D1(7u 1 , ~‘v 1 ; k1p1
) = D(u 1 , v

1 
; kp)

Next, Rule 7 is applied to the remain ing factors in the integrals for
V and V 1

. This gives the relat ions

T
1
(czu0 , av0) = T(u0, v0)
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Finally ,  using the parameter K to remove the pure phase factors , Rule 7
applied to the coefficients of the integrals gives

2~~ 1 ‘-i A 1
1 0 1  ~ 0

These seven equa tions, together with II’, constitute the scaling equations ,
but they are more conveniently expressed in terms of the physical coordi-
nates and functions . Collecting the distance relations , one finds that

I
R 

~l 
r

R
1 ~i

~R R
1 F) 

~l 
~r r

1 f

If the scal ing factors T~, 3, y are cons idered comple tely free var iables ,
the first three equations uniquely def ine the model d istances R0, R , R1.
The fourth equation then uniquely defines F. A little algebraic manipu-
lation shows that the las t equation can be written as

1 \ II (c~~- y ) l (
~~~

- y )  1
F .a\ [ f  r ~ r 1“ 1

The equation relating the aperture functions is also a single
distat equation because of the special form of the aperture functions .
It is found that

2 2 1/2

= r ec t[  

U
1

± V
1 

] 
~and that

11 2 2\~~
’2

l iii + V
i~~~l l~D(u

1 
V

1 
; k~ ) rec t 

L 2k p
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therefore , the aperture scaling equation is

yX
1

P1 5 ~~~P

The functional scaling relations are

~~~~—s— 
~) 

= K U (~ ,

~~l ~Tl~C5T 
x0 

—

~~~

- Y~) 
= T(x0 Y0)

It is important to note that now, with a lens in the 
system , the scale

factors on the object and the diffraction pattern are riot 
the same.

Finally, the relation between the amplitudes of the 
input illumi-

nating beams is

1 r
A1 

= -~-a~y A
0 [7r - (Ct - y)r01

It is this instructive to consider some examples. First , suppose

that it is desired to have the two diffraction patterns 
the same size ,

second , that it is desired to reduce the target in 
the model by a factor

of 100, and third , that for reasons of symmetry

R~ r0
R r

It can be shown that this equation implies that

The first two conditions previously given are equivalent  to

I

and

~~~ 
hf

2
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Using these relations in the first three distance equations, one obtains

-4 ?~R
0
= l O  ~~~ r0

-4 ~‘.R 1 0
1

-2 7~.R1
l0 ~~~ r1

The equation for the model focal leng th becomes

1 
= ~l io4[3 - (1 - l0

2
)
—!-

]

To further specialize the system , suppose that

r
1
= f

so that

F = 10 2 
~~ f = l0~~ 

~~~ 

r
1 

= R
1

The aperture in the model system is given by

—2pl= 10  P

and the input beam amplitude by

io
_ 2 ~

\
1

A
Ø

Suppose that the wavelength is not changed 
~
‘l 

= 2~.), that the

original system consists of a 6—rn target 10 km away , that r
0 

= r,

f = 1 m , and ~ = 12 .5 cm. The model system would then consist of a
• 6-cm targe t 1 m away, with R

0 
= R = 1 m , F = 1 cm , and p1 1.25 nun.

The dis tance R
1 
would be 1 cm .

The po int of this examp le is to show directly that this new system
• of op t i ca l  s ca l ing  can , in f ac t , be used to reduce a f i e l d — s c a l e  system
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to a manageable laboratory size. It is important to note that all
quantities do not scale in the same way. This is a consequence not onl y
of the fact that there are three scale factors , but also of the fac t
that they enter the distance relations in different nonlinear ways.

As ano ther example , an interesting special situation occurs with
the scaling parameters y = c~, ~~~~l

/?
~
. 1, T~~~1

/~. = io
_ 2 

if,in the orig inal
system ,

= 0.99 f

Then , the equat ion for  the focal length in the model system gives

1
F °

which implies an infinitely long focal length , or no lens at all. Thus ,
a “particular” system involving a lens and aperture can be modeled to
yield the same diffraction pattern with an aperture only. This is a
result in ordinary scaling particularized to a very special system. The
correctness of the result can be verified directly by substituting the
model system parameters into the expression for U

1
(~ 1, ‘

~l~~’ 
and the

value of f = r
1
/O.99 into the expression for U(~ 1’1). 

The author knows

of no other simple and direct way to find this model .

A more general result  related to this examp le can be s ta ted . For
R
0/R = r0/r , 

~~l
’
~ 

1, and any r1 
< f a scaling factor i can be found

with a?~.1A < 1, such that F = 0. That is , any single—lens system with

the receiving plane inside the focal plane of the lens can be modeled
by a lensless system containing an aperture and y i e l d i n g  a d i f f r a c t i o n
pattern identical to that from the or ig inal  system. This resul t  is
physically reasonable because in either system a Fresnel diffraction
pa ttern is obta ined , and it is just a matter of locating correspoL -ldin~
positions along the optical axis. But , again , there is no other siinplt
way of locating these positions .

These examples illustrate the power and versatility of this new
system of optical scaling.

VII. SCALING EQUATIONS FOR A TWO—LENS SYSTEM

The two systems are illustrated in Figure 4. The lenses are
again designa ted by £ j and C . and have focal lengths f~ and F

1. The

aperture transmission funct ions  are denoted by D~
i) (x ., y~ ; 

( 1 )
) for
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r1~~~~~~~~~~ 
r

2 )

(a) ORIGINAL SYSTEM

(b) MODEL SYSTEM

Figure 4. Two-lens system.

the original system and by D~ 1)(X., Y .; $1)) for  the model system. It

will be assumed later that these are rect-functions , as before. The
phase functions for the lenses have the same mathematical structure as
before.

The physical  change in going f r om a one— lens to a two-lens system
can be though t of as putting the output of the one-lens system into  the
lens at the x ,,, y 2-p lane (or the X 2 , Y 2-plane),  then allowing free-space

d i f f r a c t i o n  to the new ou tpu t  plane . The t r a n s i t i o n  for  the mathematical
expressions fol lows th is  prescr ip t ion  exac t ly ,  wi th  the added proviso
that each diffraction integral has a factor (-iA) associated wi th it.

Thus , using the one-lens expressions , chang ing (~~, ‘i) to (x 2, Y2)

(and correspondingly for the model system) and introducing the effect
of the second lens and the final distance , it is easy to find that
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ik(r
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+r 2— f 1— f 2)
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x ~~~~~~~~~~~~~~~~ y0) 
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1 ; (I)) e
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1)(~~~~~)

— ik/r(x
1
x
0
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1
y0) (2)f . • 

(2)e D ~x2 , y 2,~~

X e
i
~~

2 ( r
l
+ r 2 2 ) Y

~~

— i k [ x 2 (x 1/r 1+~ /r 2)+y 2 (y 1/r 1+1/r 2 ) ]
X e dx

0
dy0

dx
1
dy1

dx2dy2

and
ik (R +R+R +R -F -F )

r~~) A
1 

e 
R0R R

1
R
2

x e~~ h h#2R2 (~+1~ijJTfj Y )  e~
k
l

/2 l/R
O
+l/R (x~÷~~)

X D~
1
~ 
(x y ~~I \l ’  l ’°l /

-ik
1

/R(X
1
X
0

+Y
1
Y
0) (2)( - 

(2)\X e  D
1 ~X 2~~ Y 2 .~~ 1 ~

—ik
1 

[X
2

(X
1

/R 1
+~1

/R2)+Y
2

(Y
1

/R 1
+11

/R2)j
X e dX

0
dY
0

dX
1

dY
1

dX 7dY 2

For the original system , the following transformations are made:

kxi , ky~

~ kr~ , — kf ~
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o = k~ , -r = k~

V(a , )  = u(~~.~~)= U(~1~)

v
0) 

= 
T(~~ , = T(x 0 ,  y0)

, v. ; 
(i)) = D(1’(x . , y~ ; 

(i))

The corresponding trans format ions  for the model system are

U . = k X . , V . = k Y .
i l i  i 1 1

= k R. , .  = k F .
t I i  i. i i

~ = k ~~ rL i l~ l’ I l’l

V
1
(. 
~ 

‘ l~ 
= 

‘ k~) 
= U

1
(~~1 ~i~

)

V0) 
= T
1(~~ 

, k~) 
= T1

(X
Ø ‘

D~
’)(U. , v . ; = , ; p~~))= i4~ (x~ ‘ ; p ))

Using these ,one finds that

3
C- i.) eV ( :  , t )  = 

(2 n ) 2\ 
A0 r

0Y Y
1
y
2

i/2~ 2(O
2
÷~2)

ff i/2(l/T
ü+l/~ )(u~+v~~)jj T(u0.v0)e

‘< I(u0 , v0 ; ~
‘ , T) du0

dv0 ,
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where

I(u0 , v0 ; o , t )  ~ffDU)(ul , v~~; 
(I)) e

2(h
l
_VT

~~ 
(~~)

u +v v )

x e  
1 0  1 0

and 

J(u
1 . 

V
1 

; , r )  du
1
dv

1

J(u1 , v1 ; a , t )  =JJD
(2)(u2 , 

v
2 ; (2)) e

f /2(1/T
1~~~~ 2

h/12)(~~~~~~)

x e
_ u

2 h 1 +0 2) 2 h 1 ~~~~2~ du dv

and that 

2 2

V( o
1 
, = 

(- i) 3 
A ~~~~~~~~~~~~~~~~~~~~~

(2n) 
~l 

R RR
1
R2

x e 
2
~2(a ~)ff~c ,V0) e 2 0~~~~~~~~~~~

X I
1~~0 , V0 ; a 1, T1) ~~0 , dV

0

where

Il(~O 0 -r i =J fD~~~~~(U j , V
1

; (1)) e~
/2(h/ h/

~~1
_

1) V
~~

-~~~~~~+ v v )
X e  

1 0  1 0  —
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,vi ~~

01 , ~~~~
) 
=ffD

~2)(~ 2 , V2 ; ~.4
2
)) ~~~~~~~~~~~~~~~~~~~~~~~~~~~

X e 
~ 2~~ I~~ 1~

° I ~~~~~~~~~~~ ~~ 
R
2

) j
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The scaling factors are now introduced through the equations

U
0 

= , V
0 

= aV
0

ti.
1 

= 7u1 ~V1 =

11
2 

= 
~~
‘2 ‘ ‘p

2 
= b y 2

so that one has

3 2
V(3~ , ~‘r) = 

(-1) (ctyt ) A e 
— —— —(2a) 2\
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I R

0RR 1R2
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2
+-r

2
) (1 ia

2
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0
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I
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~~~~~~~~~~~~~~~~~~~~~~~~~
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From the equality of J and J1, Rule 7 gives

R
2 

r2

R
1 
!
i

. 2(1~~~~~~~~~~ 1\ (
~~~+~~

- -~~~
-

\R 1 R 2 
F2) \r 1 r 2 f 2

by
2 ; (2)) = D(2)(U2 ,  v 2

; (2) )

Rule 7 applied to I and Ii now gives

R r

2(1~~~ 1 1 \ (1 ÷~~~~ \\R R
1 

F
1) ~r r

1 f
11

~‘v1 ; (1)) D
(1)
(u1 , v1 ; (1))

and the application to the remainder of the integrand gives

a2I’~.~ +~~~~= (=~
_ +

~~
.

\R0 RJ \r0 r

~~~~ 

(au0 , cry0) = ~ (u0 , v0)

Finally , the external amplitude terms give

(ayb)
2 A1 ~ 

A0

~1 
R
Ø

RR 1
R2 ~ 

r
0
rr

1
r2

34 

. : _ •. . _ .. ~ ~ ~~~~~~~



The scaling equations for distances in the two systems are

R

~~ 
r1

=
R
2 

?~1
r2

2f1 ÷ i i \ \/i ÷ i i \y 
\~R R

1 
F
1) 

)~.1~ r r
1 ~l)

~ 2 f i  + 1 i\ \fl + 1 1
~R 1 R 2 

- 
F
2) 

\
1(~
r
1 

r
2 

- 
f

Taking the lens apertures to be rect- funct ions , one finds the aperture
scaling funct ions  to be

1 (1) ~~l (1)
j p1 p

I (2) ... ‘ l (2)
p

The functional scaling relations are the same as before:

Ju1(~~
l
~~~ i

~~)
Ku (~~,.l)

L 

fCt \
1T1(

\~
_
~~ Xo , 

—
~~
— y

0 
— T(x 0 , y0

)

The ampli tude scaling relation is again

A
1 

= Ct~ y A
0 [~ r - (a - 7)r0J
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The general properties of these sca l ing  equa t ions  are obviously
similar to those for the one-lens system ; therefore , no examples are
needed .

VIII . GEN ERALIZATION TO AN n-LENS SYSTEM

There is a pattern to the scaling equations which allows one
to generalize from this point to a system containing any number of
lenses. This general result can be proved by induction starting with
the diffraction integrals , but there would be very little virtue and a
great deal of tedium in this.

An examination of the previous scaling equations shows that the
scal ing factors Ct and ~ occupy special positions in the hierarchy of
scaling factors . This reflects their special relations to the input
(target) and output (diffraction pattern) signals. The other scaling
fac tors  are “internal” to the system, each one being associated with a
physical plane containing an aperture and a lens . For notational
convenience , these internal scal ing factors will be relabeled .

Let be associated with lens C.. Let be the scaling factor

for the target and ~ be the sc aling factor for the diffraction pattern.
Then, the scaling equations for distances in an n- lens system are :

R

1i-l7i ?~. I
, i = 1  • . .n— 1.

R~

_____ “. I
R ?~. rn l n

i 2... n
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The aperture scaling relations are

= ,v1 
; , i = i ... n

and if all the apertures are rect— functions, the aper ture radii scale
accord ing to

(i) - 
‘i-l~ l (i)

p1 
— C

Finally , the func tional equa tions and the amplitude equation are

B>~ \
—

~

-

~ ~
) = K U(~ ,

x0 
~~~l y

o) 
= T(x 0 , y0)

rA =~~~~~~~~~~L~~~~~~ A , n~~~ 11 ~‘. 0 0 [ ,
0
r - (a - y

0
)r
0
]

IX . TREATMENT OF A SPATIAL FILTER

A spatial filter is a common element in many coherent optical
systems . The suggested design for the tactical optical pattern recogni-
tion system requires a spatial filter. It is quite simple to include
spatial filters in the new optical scaling system, as will be seen.

A spatial filter is a physical object with specially chosen trans-
mission properties. Mathematically, a spatial filter is represented by
its transmission function. Because any real spatial filter has a finite
aperture , it would be appropriate to call it an aperture (or aperture
transmission) function , and to represent it by the symbol D (but not
necess arily meaning a rect- function). This will be done. A spatial
filter in the original system at plane m will be represented by

D
(m)

(X , 
~~~ 

or by D (m)
(X , y )  if it is particularly important to

d istinguish it as a spatial filter.

The generality of the scaling equations will be increased if each
spatial filter is treated as being associated with a lens , even though
spatial filters often stand alone. Such a treatment allows for the
possibility that a lens be used at the spatial filter in the model system ,
even if there is rio lens at the spatial filter in the original system.
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Using this approach , the inclusion of spatial filters in the
formalism introduces no changes in the previously derived general scaling

equations . Specificall y, if the spatial filter is at the m
th 

lens plane ,
the contribution of this element to the scaling equations is of the form

7m— 2~~m-l ?‘. 1
R ~. r
m-l 1 rn-i

• 2 / 1  1 l \ . . / l  1 1
‘rn-I(R~~~~~~R T J  T + - 

£
\ m-i m m, 1 \m - 1 m m

• D~~~)(
m_

~ ~ i 
‘.1 

~m) 
= D~

m) (x , 
~~

for an internal plane. The modifications required if the spatial filter
is in either the first or the last lens plane are apparent from the
general equations .

The distinguishing features of the spatial filter enter the calcu-
lations only when explicitly evaluating the preceding aperture-scaling
equation. The general result is that in the model system the spatial
filter transmission function is magnified by the factor

7m-l ~l
x

relative to the spatial filter in the original system. As an example ,
consider a spatial filter consisting of a central opaque spot of radius
p .  The spatial filter also has a finite total aperture , and is taken

to be a circle of radius p > p ,  concentric with the spot. Then

(i n)  ~ + y
~)
”2 

(2 +
D

9 (xm , 
~~~~~ 

= rect 
~~~ 

- rec t .

Thus ,

(m)(~m-l ~l 
7m-l ~1 \ 1rn-l ÷ y

~ )l/2

D
15 \ ~~ 

x , 
~ ~

‘m) 
rect 2

~~~1m

/ ~
yrn-i I m m

- rec t
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so that the scaling equation gives

~m-l ~ l

~lm )~. ~rn

rn-i 1
pls = 

~ 
p5

It is also instructive to examine spatial filter scaling in the
case for which neither system has a lens at the spatial filter. One
must then set f = F = ~ and consider all equations that involve onlyrn at
the distances r , r , R , and R . These equations are now

rn— i rn rn—i m

~rn — 2 ‘rn—I 
— 

\ 1
R
rn-l 1 rn- l

2 1 1  l\ \1 l  I

~rn-l (R ~~R J \~~ 
+

\ rn—l rn/ 1 \ rn-i ni

‘rn-i 7rn \ 1
R \ rrn l r n

Now , if the first and last equations are subtracted from the middle
equation , the result is

[‘rn-i - ‘m
+ 

‘rn-l - 
1rn-2 —

rn-li R R 
0

L m rn-i

This can be written as

(-~3~~~~~~~~~ (~~~~~~~~ l
\ / \~

‘rn-2
+ = 0r r

m rn-i

This indicates that if the scaling factors y , , are cons idered to be
rn rn-2

at one ’s disposal , then is determined once the others are chosen.
m—

This is phys ically reasonable beca use it would be surpr is ing i f the
scale on a spatial filter could be chosen completely independent of the
scale of the rest of the optical system.
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The intuitive choice (for no lenses at the spatial filters) is

7m-1 7ni~~~~m-2

which means that lenses in - I, m + I, and the spatial filter all scale
ftorn the original system by the same factor. This , however , is not the

• only scaling solution. Another scaling solution is given by

2 =(~~~~~\ (~~~÷ 1 \
l 

-ni-I Ir r J t y r  y r
m rn-if \ m m m-2 rn-i

This reduces to the intuitive solution only for the choice ;~m m-2

This example shows, aga in , the considerable modeling flexibility avail-
able with this new system.

• X. MODItING THE TACTtCAL OPTICAL PATTERN RECOGNITION
SYSTEM

The suggested design for the tactical optical pattern recogni-
tion system required four elements: two lenses followed by a spatial
filter , which is , in turn , followed by the third lens . The system is
shown in Figure 5. There is rio lens at the spatial filter , so one must

take f
4 

= ~~. The spatial filter consists of a central obscuring spot ,

whose radius will be denoted by ~ . All the lenses have circular
apertures. 

S

~~~~~~~~~~~~~~~~~~~~
x
i

x : X 3
X

4

Figure 5. The tactical optical pattern recognition svstcni .
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The distance scaling equations are:

a70 ~R 
— 

~l 
r

~0~ 1 .k 1
R
1 

— 

~l 
r
1

~1~ 2 \ 1
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\
1
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2

~2~ 3 ~ 1
R
3 ~.1

r
3

\ 1
R ~ r4 1 4

2 /1. 1 1.\ ~./l I
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1
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R
2 

- 
F
2) 

— 

~ l 
~r1 

r
2 

- 
f
2

-+t ~~~~ L)=~~~~~(-L
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)

2/ 1  + 1 1 \  ‘./ l ~~~ 1
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The aperture scaling equations are:

41



(1) 
- ~O~l (1)

C1 
—

~~~~~~~~~~ 
r

(2)  ~1~l (2)
~i ~~

(3) ~2~l (3)
p1 ~~~~~~~~

~is ~. ~s

(4) ~3~ l (4)
=

The functional and amplitude scaling equations are:

U
1 

—
~~

— 
~ , ~~~ 

= K U (~

T
1 

-
~~~~~ x0, y

0 
= T (x

0 , y0)

A1 = ~~~a~ y0 A0 [y
0
r - (a - y

0)r0
]

It is apparent that there is considerable design freedom (six
scaling factors) available in specifying a laboratory model 01 the
field-scale system. The determination of some particular models from
these equations will be left for a subsequent report.

XI. DISCUSSION

The basic princ iples of a new sys tem of o p t i ca l  s c a l in g  ~i i i d

modeling have been presented . These principles app l y to any apt ic . il
situation in which the illumination is total ly coherent and for which
the paraxial approximation is valid . The primary sci li ng ri lati on is
geometrical similarity between the output diffraction patt erns ot in
original optical system and its model. The opt ical scaling based ~n
these principles is called ordinary scali ng.

The theory of ordinary scaling was developed in le t a i l  b r  any
system consisting entirely of lenses and apertures and spa i j i l l i l t e rs.

‘4 -~



In particular , the work in this report was directed toward the scaling
of optical pattern recognition systems that might be used tactically.
Because of this emphasis , a special kind of target illumination was
assumed in the derivations . This limitation is not serious , however ,
and its removal is simple. Thus , the theory developed here is essen-
tially applicable to any optical pattern recognition or optical data
processing system at any wavelength .

By using an example of a single-lens system , it was shown that this
new theory of ord inary scaling makes it accurately possible to model
very large sc a le sys tems with modes tly-s ized laboratory systems . The
par ticu lar significance of this is that certain tactical parameters such
as targe t si gnatures can be determined wi thout the large expense of field
tests using a field-scale system. The theory also allows a change itt
wavelength in the model , which can be another cost-saving convenience;
it also allows a laboratory rnodel using the field wavelength , obtaining
a field-size diffraction pattern , and having the same power throughout,
which means that field detectors and circuitry can be tested directly
in the laboratory . The final development was a set of scaling equations
app licable specifically to a previously specified tac tical optical
pattern recognition system.

As indicated br ief ly  in Section I, the basic principles of ordinary
scaling apply more broadly than the narrow development of this report
might indicate . They apply, in fac t, to any of optical phenomenon for
which propagation e f fec t s  can be expressed in a form like the Fresnel-
Kirchhoff diffraction integral. It is the author ’s opinion that this
includes the important phenomena of optical scattering by par ticle
distributions , optical scattering by turbulent fluctuations , and optical
path distortion by thermal effects.

It is the author’s belief that the particular results presented in
this, report , and other results which can be developed from the basic
pr inciples of ord inary scaling are of considerable importance to Redstone
Arsenal in areas outside of optical pattern recognition. The basis for
the importance is money: ordinary scaling will allow laboratory measure-
ments of f ield performance , where the only previous option was actual
field measurement. It is the author’s opinion that ordinary scaling can
be used to design f ie ld-accura te  laboratory measurements associated with
the following problems :

a) Laser designation/guidance systems.

b) Smoke.

c) Turbulence.

d) Inclement weather.

e) Terrain/thermal effects.

I) Optical countermeasures .

43

. — . . . . .



DISTRIBUTION

No. of N .  of
C opies Copies

Defense  I cIrne t ii n Ucate r Di m c  to r
Cameron SL ~~t ion  Beset  Weapons L aL~~r , t  r .
Alexan dria , ‘, i r , Lni 314 2 Watervliet Arsenal

ACts: SWE WV -Rl d- if Mt . A 1ra ,~
datern lie t , New .rk 12189

75 \ ruin Elect ole .c
A t t . ~: URSEL-Ci-: ., Dr. diner 1 thin: , M i ~~~jjn 1W Tethnjc~ l Ares

—7 7—4 , Mr. E~l y~rn 1 CS Army Electro nic Warfare l .,7 r U.tn
— T — L— d , Mr. M : r .,clii 1 Atte : A\’ SEL—dL — yI
-WL- d , Mr. Hardin I —MJ , Mr. Kasparee
-IlLS , Mr. Giambalvo I - WL—MS , Sylvia {olhjelle
-W LS , Mr. Chan Ces 1 White Sands M i s s i l e  Ran ge , New Mexico 85:12

Fort Moninouth , New Jersey .177(13
Director , CS Army Materials

Coimsander and Mechanics Research Center
US Army Armaments Coeenand (tin: DEXIlE—liM , Mr. Dign am
Attn : SARRI—LR , Dr. Amoruso 1 Watertown , Massachusetts 02172

-I-SPA , Mr . Fosbinder 1
DRCI’M-CAWS , COt S. ‘F. Post , Jr. I Director , Harry Diamond Laboratories

Rock Island , Illinois 61201 A tm : DRXDO—RCN , Dr. Gleason
-SAN , Mr . Johnson

Comnander Connecticut Ave & Van Nes s St. , NW
US Army Materiel Corrsnand Washington , DC 20438
Alto: DRCRD-MT 5
5001 Eisenhower Avenue Coimnander
Alexandria , Virg inia 22314 US Marine Corps Development

and Education Cosasand
Director Attn: Development Center
US Army Materiel Systems Anal ysis Agenc y Quantico , Virg inia 22314
Att n: DRXSY-D I

—CS , Mr. Marchetti I Commander
Aberdeen Proving Ground , Maryland 21005 US Marine Corps , Code AX

Washington , DC 20380
Commander
Edgewood Arsena l Director
Attn: SAREA—TD I Waterways Experiment Station

-DE-DU , Mr. Tannebaum I Corps of Engineers
Aberdeen Proving Ground , Mary land 21010 Attn: Mr. Grabeu

Dr. LaGarde
Director P.O. Box 631
US Army Air Mobility Research Vicksburg, Mississipp i 39180

• and Development Laboratory
Eustia Directorate Commander

• Attn: SAVOL— EG-MO , Mr. Joe Ladd 1 (IS Army Infantry School =Fort Dustis , Virginia 23604 Attn: ATSH- l
Fort Benning , Georg ia 31905

Direc tor
Ni ght Vis ion  Laboratory (USAECO M ) C oiisaander

• Att n : DR SEL -NV-V l , Mr.  Kodak I US Army Armor School
Fort B.lvoir , Virginia 22060 Attn : AT SB—C D—M

Fort Knox , Kentucky 40121
C~~~ ande r
US Army Mobi l i ty  Equi pment Re search Comm a nd er

and Development Center US Army Air Defence School
Att n: STSF B—BA , Mr.  At kin ion 1 Air Defen ce Age nc y
Fort Belvoir , Vi rg in ia  22060 Attn :  ATS A-CT D-M S

Fort Bliss , Tex.s 79916
Director
A tmospheric Sciences Laboratory (US AE CO I4 ( C omma nder
At tn :  DR SEL —BL , Mr.  L indber g 1 US Army Ordnance Center & School
White Sands Mis s i l e  Range , NewMexi co 88002 At E n:  AISL—C ’FD-NS—R (LI Robert , )

Aberdean Proving Ground , .lery land 21005
Coim,,ander
F icatinny Arsenal Commander
A tt n : SMIJPA-A.D—C , Mr . Heinemann I I’S A rmy Cobined Arms Combat Development

FRL , FY80 , Mr. Nova k I A c t iv l c y
Dover , New Jersey 07801 A tt n : ATCACC-IH 2

-E , Mr. C ray
Coimnander For t  Leavenworth , K ansaS  8,).
Frankford Arsenal
Attn : SARFA-L5000 , Dr. M c N e L I I I C ose%anl er
Philadelphia , Pennsylv ania 47 (IS Army Combat l)evelopment

Exper Imentat Ion t oImna ni
Library yt, : Tech I , i , . , , v  — n 22
U S Army War Co l lege  F a r t  r i , c l i i  r e
Carlisle Barracks , Penn sylvan ia 170 1 3

44



No , of No.  of
Copies Cop ieS

Headquar ten. Director
US Army Foreign Scienc e US Army Huma n Engineering Laboratory

and Technology Center At t n :  DRXIM (Mr. Richard K. Kramer)
Attn:  DRX S? —C B1 , Mr. Pear son 2 Aberdeen Proving Ground , Ma r y land 2100 5
220 Seventh Street , NE
Charlottesville , Virg inia 22901 Commander

Headquarters , (iS Army Training
Headquarters and Doctrine Coimnand
Department of the Army Attn : DCS-CD (ATCD—CS—PL)
The Pentagon (ATCD-CS-FY, LTC Davis
Attn: DARD—DDM , MAJ Kopsac 5 Fort Monroe , Virginia 23651
Washington , DC 203 10

Head qua r te r s MAS STER
AFATL/DLWS Attn: AFMAS-CSS (Mr . Kirkwoo il )
Attn: MAd 0. Couture I -AC-PE3 (M.A.j Alexander2 I
Eglin AFB , Florida 32542 Fort Hood , Texas 76544

Defense Advanced Research Project Agency Commander
Tactica l Technology O f f i c e  Naval Weapons Laboratory
Att n : Dr. C. H.  Church 1 Attn : Mr. George W ill iams , Code U P  1
1400 Wilson Boulevard Mr. W ill iam Sp icer , Code EJM
Arl ington , V irginia 22209 Dahlgren , Virg ini a 22448

Commander Commander
Maver ick Systems Project Office US Army Field Ar tillery School
At m : ASS/SD 6514 1 Attn : ATSF-CTD—WS

65—EN YX 1 -S I
Wright-Patter son Air Force Base, Ohio 45433 Fort Sill , Oklahoma 73503

Co and.r 015141-FR, Mr. Str ickland
Naval Weapon. Center -I.?, Mr. Voigt
Attn: Mr. C. P. Smith (Code 405) 1 .V , I4AJ li.rborth

Mc. 1. Ii. Michol . (Cod. 60401) 1 —rL400C-UW
Chi na Lab. , California 93555 -VlSI, Mr. Todd

-D 1
Offic. of Aaai .tant for Land Warfare —GB. Nt.  C. 3. Hutchesan
Director for Def.na. P.a.arch -I , Dr. McDaniel

and Engineering Dr . Kob ler I
Attis: Dr. Richard E. Schwartz I UD 3
Pentagon , Roam 3El02S -ID 1
Was hingt on , DC 20301 -11 1

• -*50 , K r.  Simian I
Naval Air Systems Commend Mr. Widenhofer
Att n: LI Q~~ F, C . Wood . 1 Mr. Farmer
AIR-5 lO9C , Room 1258J P2 Mr. Anderson 10
Wash ington , DC 20360 -RFL I

-h A I
Headquarters , uSA~ (IDPA) -11W
Director of 0ev & Acq, DCS/R&D -RFD
Ati n: tIC Bi l l  Seufer t I -IFS
Washing ton , DC 20330 RFY

-RYE
Head quarters , Air Force System. Command -P,PGA
Attn : AFSC 0t. CAW/lKr . R . Cr oss I -RIGS 1
Andre w. Air Force Base —~~
Wa shingto n . DC 20334 —IL I

-RT I
Air Force Spec ial Co~~ snications Center “BIB (Record Copy)
Technical Sensors Division 1 (R.f. re nce Copy)
San Antonio , Texas 78243 -Pt , Mr . P lt lSsan 1

Director
US Army Bal l i s t ic  Research Laboratories
At t n :  DBXBR-CA 5Cr. H. L . Reed )

-CAL (Kr. Arthur LaGrange )
DBXSY , Mr. ‘F . Dolce I

Aberdeen Proving Ground , Maryland 2100 5


